Heun's method

1. Use four steps of Heun's method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined by

$$
\begin{aligned}
y^{(1)}(t) & =-y(t)+t-2 \\
y(0) & =1
\end{aligned}
$$

Answer: 1.0, 0.375, $-0.05859375,-0.3426513672,-0.5098838806$
2. Use eight steps of Heun's method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined that shown in Question 1.

Answer: To ten digits of significance, $1,0.65625,0.3674316406,0.1271076202,-0.07040499151$, -$0.2301231566,-0.3564759117,-0.4533732658,-0.5242670237$.
3. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}\left(h^{3}\right)$ for a single step.

Answer: To ten significant digits, the error of the approximation of $y(0.25)$ in Question 1 is 0.009797 and the error of the approximation of $y(0.125)$ in Question 2 is 0.001225 , and this second value is approximately one eighth the error of the first.
4. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}\left(h^{2}\right)$ over multiple steps.

Answer: $y(1)=4 e^{-1}+1-3 \approx-0.5284822353142307136$, so the error of the approximation in Question 1 is approximately 0.01860 while the error with the second approximation is 0.004215 , which is approximately one quarter that of the previous approximation.

